Galois Theory and a New Homotopy Double Groupoid of a Map of Spaces

نویسندگان

  • Ronald Brown
  • George Janelidze
چکیده

The authors have used generalised Galois Theory to construct a homotopy double groupoid of a surjective fibration of Kan simplicial sets. Here we apply this to construct a new homotopy double groupoid of a map of spaces, which includes constructions by others of a 2-groupoid, cat-group or crossed module. An advantage of our construction is that the double groupoid can give an algebraic model of a foliated bundle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

A Homotopy Double Groupoid of a Hausdorff Space

We associate to a Hausdorff space, X, a double groupoid, ρ 2 (X), the homotopy double groupoid of X. The construction is based on the geometric notion of thin square. Under the equivalence of categories between small 2-categories and double categories with connection given in [BM] the homotopy double groupoid corresponds to the homotopy 2-groupoid, G2(X), constructed in [HKK]. The cubical natur...

متن کامل

The Lusternik-schnirelmann Category of a Lie Groupoid

We propose a new homotopy invariant for Lie groupoids which generalizes the classical Lusternik-Schnirelmann category for topological spaces. We use a bicategorical approach to develop a notion of contraction in this context. We propose a notion of homotopy between generalized maps given by the 2-arrows in a certain bicategory of fractions. This notion is invariant under Morita equivalence. Thu...

متن کامل

On the homotopy type of Lie groupoids

We propose a notion of groupoid homotopy for generalized maps. This notion of groupoid homotopy generalizes the notions of natural transformation and strict homotopy for functors. The groupoid homotopy type of a Lie groupoid is shown to be invariant under Morita equivalence. As an application we consider orbifolds as groupoids and study the orbifold homotopy between orbifold maps induced by the...

متن کامل

On the Connection between the Second Relative Homotopy Groups of Some Related Spaces

The title of this paper is chosen to imitate that of the paper by van Kampen [10] which gave some basic computational rules for the fundamental group TTX{ Y, £) of a based space (an earlier more special result is due to Seifert [14]). In [1] results more general than van Kampen's were obtained in terms of fundamental groupoids. The advantage of the use of groupoids is that one obtains an easy d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2004